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PLEASE ANSWER ALL QUESTIONS.
PLEASE EXPLAIN YOUR ANSWERS.

1. (a) Find all the pure and mixed-strategy Nash Equilibria of the following game.

Player 1

Player 2
t1 t2 t3

s1 1, 0 5, 2 1, 5
s2 3, 3 2, 1 0, 2

(b) Suppose now that we introduce a new strategy for Player 1. Denote the corresponding
game by G:

Player 1

Player 2
t1 t2 t3

s1 1, 0 3, 2 1, 5
s2 3, 3 2, 1 0, 2
s3 0, 4 10, 10 0, 11

Use iterated elimination of strictly dominated strategies to simplify the game. Explain
briefly each step (1 sentence). What is the set of pure and mixed-strategy Nash
Equilibria of G?

(c) Now suppose we repeat G twice. Denote the resulting game by G(2). How many
proper subgames are there (not counting the game itself)? Show that there is a
Subgame-perfect Nash Equilibrium of G(2) in which (s3, t2) is played in stage 1. Be
careful to write up the equilibrium.

2. Signaling. Consider the following signaling game.
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(a) Find all the (pure strategy) separating Perfect Bayesian Equilibria (PBE).
(b) Find the (pure strategy) pooling equilibrium in which both types send message L.

Does it satisfy signaling requirement 5 (SR5)?
(c) Explain in your own words the logic behind SR5. You may use the above game as an

example.
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3. Consider a second-price sealed bid auction with two bidders, who have valuations v1
and v2, respectively.

(a) First, assume that the values are distributed independently uniformly with

vi ∼ u(1, 2).

Thus, the values are private. Show that there is a symmetric Bayesian Nash Equi-
librium where the players bid their valuation: bi(vi) = vi (recall that the auction
format is second-price sealed bid).
(Hint: Look at whether the players can profitably deviate by bidding higher or lower.)

(b) Consider now the following common value setting. The auction format is still
second price. Each player i observes a signal si, where

si ∼ u(1, 2).

The valuation of the players is the sum of the two signals: for each i,

vi = s1 + s2.

The expected valuation of player i conditional on si is E[vi|si] = E[s1 +s2|si] = si + 3
2 .

Suppose players bid their expectation, i.e. that bi(si) = si + 3
2 . What is the expected

value of player i conditional on si and conditional on winning the auction? I.e., what
is E[vi|si, i wins]?

(c) Relate your answer in the last question to the concept of the winner’s curse.

4. Consider the following exercise in which a buyer and a seller have valuations vb and vs,
but only the seller knows the valuations. The buyer makes an offer of a price, and the
seller chooses whether to accept. The details are as follows.
Valuations. The seller’s valuation is uniformly distributed on the unit interval. I.e.

vs ∼ u(0, 1).

The buyer’s valuation is vb = k · vs, where k > 1 is common knowledge.

Information. Seller knows vs (and hence vb) but the buyer does not know vb (or vs).

Buyer. The buyer makes a single offer, p, which the seller either accepts (a = 1) or
rejects (a = 0). (I.e., it is the buyer who sets the price, and seller who decides whether he
accepts or rejects.) The buyer gets payoffs

ub(p, a) =
{
vb − p if a = 1 (seller accepts),

0 if a = 0 (seller rejects).

The buyer’s strategy is just a choice of p, since he cannot condition his choice on vb.
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Seller. The seller’s payoffs are

us(p, a) =
{
p if a = 1 (seller accepts),
vs if a = 0 (seller rejects).

His strategy can be described as a function a(p, vs), where a(p, vs) = 1 corresponds to
accepting the offer of p when his valuation is vs, and a(p, vs) = 0 corresponds to rejecting
it. Suppose that whenever he is indifferent, he accepts the offer.
We will look for a Perfect Bayesian Equilibrium (PBE).

(a) Show that in a PBE, a∗(p, vs) = 1 if and only if vs ≤ p.

(b) Buyer’s expected payoff from making an offer of p is

π(p)(E[vb|seller accepts, p]− p),

where π(p) = P(seller accepts|p).
i. Find π(p) given a∗(p, vs).
ii. Find E[vb|seller accepts, p] given a∗(p, vs).

(c) What is the PBE when k > 2? What is the probability that trade takes place? How
would the answer change if k < 2?
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